The Linear Arboricity of Planar Graphs without 5-Cycles with Chords
نویسندگان
چکیده
The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that for a planar graph G with maximum degree ∆(G)≥ 7, la(G) = d(∆(G))/2e if G has no 5-cycles with chords. 2010 Mathematics Subject Classification: 05C15
منابع مشابه
The Linear Arboricity of Planar Graphs without 5-, 6-Cycles with Chords
The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that for a planar graph G with maximum degree ∆(G) ≥ 7, la(G) = d 2 e if G has no 5-cycles with chords.
متن کاملA Note on The Linear Arboricity of Planar Graphs without 4-Cycles∗
The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that if G is a planar graph with ∆(G) ≥ 5 and without 4-cycles, then la(G) = ⌈∆(G) 2 ⌉. Moreover, the bound that ∆(G)≥ 5 is sharp.
متن کاملThe List Linear Arboricity of Planar Graphs
The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. An and Wu introduce the notion of list linear arboricity lla(G) of a graph G and conjecture that lla(G) = la(G) for any graph G. We confirm that this conjecture is true for any planar graph having ∆ > 13, or for any planar graph with ∆ > 7 and without i-cycles for some i ∈ {3, 4, 5}....
متن کاملVertex arboricity of toroidal graphs with a forbidden cycle
The vertex arboricity a(G) of a graph G is the minimum k such that V (G) can be partitioned into k sets where each set induces a forest. For a planar graph G, it is known that a(G) ≤ 3. In two recent papers, it was proved that planar graphs without k-cycles for some k ∈ {3, 4, 5, 6, 7} have vertex arboricity at most 2. For a toroidal graph G, it is known that a(G) ≤ 4. Let us consider the follo...
متن کاملOn list vertex 2-arboricity of toroidal graphs without cycles of specific length
The vertex arboricity $rho(G)$ of a graph $G$ is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces an acyclic graph. A graph $G$ is called list vertex $k$-arborable if for any set $L(v)$ of cardinality at least $k$ at each vertex $v$ of $G$, one can choose a color for each $v$ from its list $L(v)$ so that the subgraph induced by ev...
متن کامل